

UNITED STATES DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration NATIONAL MARINE FISHERIES SERVICE Southeast Regional Office 263 13th Avenue South St. Petersburg, Florida 33701-5505 http://sero.nmfs.noaa.gov

DEC 19 2017

F/SER31: BGR SER-2017-18847

Chief, Fort Myers Section Jacksonville District Corps of Engineers Department of the Army 1520 Royal Palm Square Boulevard, Suite 310 Fort Myers, Florida 33919

Ref.: SAJ-2017-01247 (NW-EMC), Honc Marine / Jen Chilson on behalf of Ryan Davis, Shoreline Stabilization, Saint James City, Lee County, Florida

Dear Sir or Madam:

The enclosed Biological Opinion ("Opinion") was prepared by the National Marine Fisheries Service (NMFS) pursuant to Section 7(a)(2) of the Endangered Species Act (ESA). The Opinion considers the effects of a proposal by the Jacksonville District of the U.S. Army Corps of Engineers (USACE) to authorize shoreline stabilization under the authorities of Section 404 of the Clean Water Act and Section 10 of the Rivers and Harbors Act on the following listed species and/or critical habitat: loggerhead sea turtle (Northwest Atlantic [NWA] distinct population segment [DPS]), Kemp's ridley sea turtle, green sea turtle (North Atlantic [NA] and South Atlantic [SA] DPSs), smalltooth sawfish (U.S. DPS), and smalltooth sawfish critical habitat. NMFS concludes that the proposed action may affect, but is not likely to adversely affect, loggerhead sea turtle (NWA DPS), Kemp's ridley sea turtle, green sea turtle (NA and SA DPSs), and smalltooth sawfish (U.S. DPS). NMFS determined the proposed action is likely to adversely affect, but will not destroy or adversely modify, smalltooth sawfish critical habitat.

Please direct questions regarding this Opinion to Bette Rubin, Consultation Biologist, by phone at (727) 209-5993, or by email at Bette.Rubin@noaa.gov.

Sincerely,

Roy E. Chabtree, Ph.D. Regional Administrator

Enclosures: Biological Opinion

File: 1514-22 F.4

Endangered Species Act - Section 7 Consultation Biological Opinion

Action Agency:

Applicant:

Activity:

Consulting Agency:

U.S. Army Corps of Engineers (USACE), Jacksonville District

Honc Marine / Jen Chilson on behalf of Ryan Davis

Permit Number SAJ-2017-01247 (NW-EMC)

Shoreline Stabilization, Saint James City, Lee County, Florida

National Oceanic and Atmospheric Administration (NOAA), National Marine Fisheries Service (NMFS), Southeast Regional Office, Protected Resources Division, St. Petersburg, Florida

Consultation Number SER-2017-18847

Approved by:

hlft

Roy E. Chabtree, Ph.D., Regional Administrator
 NMFS, Southeast Regional Office
 St. Petersburg, Florida

Date Issued:

DECEMBER 19,2017

Table of Contents

1	INTRODUCTION	5
2	CONSULTATION HISTORY	5
3	DESCRIPTION OF THE PROPOSED ACTION AND ACTION AREA	6
4	STATUS OF LISTED SPECIES AND CRITICAL HABITAT	7
5	ENVIRONMENTAL BASELINE	20
6	EFFECTS OF THE ACTION ON CRITICAL HABITAT	21
7	CUMULATIVE EFFECTS	22
8	INTEGRATION AND SYNTHESIS	22
9	CONCLUSION	27
10	INCIDENTAL TAKE STATEMENT	
11	CONSERVATION RECOMMENDATIONS	
12	REINITIATION OF CONSULTATION	
13	LITERATURE CITED	29

List of Figures

Figure 1.	Image of the proposed project site and surrounding area
Figure 2.	Map of smalltooth sawfish critical habitat – CHEU 11
Figure 3.	Impacts to smalltooth sawfish critical habitat essential feature due to dredging and sea
level rise.	
Figure 4.	Possible trajectories of future transformation in Florida's Greater Everglades
landscape	e due to sea level rise

List of Tables

Table 1. Effects Determinations for Species (DPSs) the Action Agency or NMFS Believe May	
Be Affected by the Proposed Action	8
Table 2. Effects Determinations for Designated Critical Habitat the Action Agency or NMFS	
Believe May Be Affected by the Proposed Action	9
Table 3. Summary of Impacts to the Shallow, Euryhaline Habitat Essential Feature	

Acronyms and Abbreviations

CFR	Code of Federal Regulations
CHEU	Charlotte Harbor Estuary Unit
CO_2	Carbon Dioxide
DPS	Distinct Population Segment
EFH	Essential Fish Habitat
ESA	Endangered Species Act
FDEP	Florida Department of Environmental Protection
FR	Federal Register
GMFMC	Gulf of Mexico Fishery Management Council
IPCC	Intergovernmental Panel on Climate Change
LAA	Likely to Adversely Affect
MHWL	Mean High Water Line
MLLW	Mean Lower Low Water

NLAA	Not Likely to Adversely Affect
NMFS	National Marine Fisheries Service
NOAA	National Ocean and Atmospheric Association
Opinion	Biological Opinion
PCTS	Public Consultation Tracking System
PRD	Protected Resources Division
RPMs	Reasonable and Prudent Measures
RM	Red mangrove essential feature
SAV	Submerged Aquatic Vegetation
SH	Shallow, euryhaline habitat essential feature
TTIEU	Ten Thousand Islands/Everglades Unit
U.S.	United States of America
USACE	U.S. Army Corps of Engineers
USFWS	U.S. Fish and Wildlife Service
YOY	Young-of-the-year

Units of Measurement

ac	acre(s)
°C	degrees Celsius
cm	centimeter(s)
°F	degrees Fahrenheit
ft	foot/feet
ft^2	square feet
in	inches
km	kilometer(s)
lin ft	linear feet
m	meter(s)
mi	miles
mi ²	square miles

1 INTRODUCTION

Section 7(a)(2) of the Endangered Species Act (ESA) of 1973, as amended (16 U.S.C. § 1531 et seq.), requires that each federal agency ensure that any action authorized, funded, or carried out by such agency is not likely to jeopardize the continued existence of any endangered or threatened species or result in the destruction or adverse modification of critical habitat of such species. Section 7(a)(2) requires federal agencies to consult with the appropriate Secretary on any such action. The National Marine Fisheries Service (NMFS) and the U.S. Fish and Wildlife Service (USFWS) share responsibilities for administering the ESA.

Consultation is required when a federal action agency determines that a proposed action "may affect" listed species or designated critical habitat. Informal consultation is concluded after NMFS determines that the action is not likely to adversely affect listed species or critical habitat. Formal consultation is concluded after NMFS issues a Biological Opinion ("Opinion") that identifies whether a proposed action is likely to jeopardize the continued existence of a listed species, or destroy or adversely modify critical habitat, in which case reasonable and prudent alternatives to the action as proposed must be identified to avoid these outcomes. The Opinion states the amount or extent of incidental take of the listed species that may occur, develops measures (i.e., reasonable and prudent measures [RPMs]) to reduce the effect of take, and recommends conservation measures to further the recovery of the species.

This document represents NMFS's Opinion based on our review of impacts associated with the proposed action to issue a permit within Lee County, Florida. This Opinion analyzes the proposed action's effects on threatened and endangered species and designated critical habitat, in accordance with Section 7 of the ESA. We based our Opinion on project information provided by the U.S. Army Corps of Engineers (USACE) and other sources of information, including the published literature cited herein.

2 CONSULTATION HISTORY

NMFS received a request for formal consultation under Section 7 of the ESA from USACE on August 21, 2017. The request letter, referred to permit application SAJ-2017-01247(NW-EMC). USACE determined that the proposed project may affect, but is not likely to adversely affect, the North Atlantic (NA) and South Atlantic (SA) Distinct Population Segments (DPSs) of green sea turtles, the Northwest Atlantic (NWA) DPS of loggerhead sea turtles, Kemp's ridley sea turtles, and the U.S. DPS of smalltooth sawfish. USACE also determined that the proposed project may affect, and is likely to adversely affect, smalltooth sawfish critical habitat – specifically, the Charlotte Harbor Estuary Unit (CHEU). NMFS requested additional information on September 25, 2017. We received a final response from USACE on September 26, 2017, and initiated formal consultation that day. Additional detail regarding the size and distribution of red mangroves was received on October 30, 2017.

3 DESCRIPTION OF THE PROPOSED ACTION AND ACTION AREA

3.1 Proposed Action

The applicant proposes to place 80 linear feet (lin ft) of riprap along the shoreline, to stabilize the shoreline and adjoin existing riprap on either side of the property line. The riprap will extend 3 feet (ft) beyond the Mean High Water Line (MHWL), which will impact 240 square feet (ft²) of shallow, euryhaline habitat. Riprap will be installed mechanically from the uplands, using a bobcat. The project is expected to take 7 days, and work will only be conducted during daylight hours. The applicant will comply with NMFS's *Sea Turtle and Smalltooth Sawfish Construction Conditions*,¹ including the use of turbidity curtains for the duration of in-water work. The applicant also plans to plant 2 rows of red mangroves along the toe of the riprap.

3.2 Action Area

The project site is located at 3267 Franzone Road, Saint James City, Lee County, Florida (26.50742° N, 82.08065° W [North American Datum 1983]), within the boundaries of the CHEU designated smalltooth sawfish critical habitat. The project site is in an unnamed manmade canal on Pine Island, at an undeveloped residential lot approximately 1.6 miles (mi) from San Carlos Bay at the mouth of the Caloosahatchee River, and approximately 6.5 mi from the Gulf of Mexico (Figure 1).

¹ NMFS. 2006. Sea Turtle and Smalltooth Sawfish Construction Conditions, revised March 23, 2006. National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Regional Office, Protected Resources Division (PRD), Saint Petersburg, Florida.

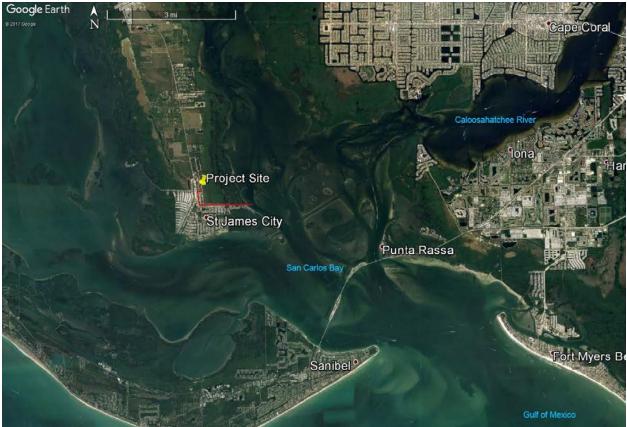


Figure 1. Image of the proposed project site and surrounding area, with navigable path to San Carlos Bay and the mouth of the Caloosahatchee River (red line), and proximity to the Gulf of Mexico (©2017 Google)

The term action area is defined as "all areas to be affected directly or indirectly by the federal action and not merely the immediate area involved in the action" (50 Code of Federal Regulations (CFR) 402.02). For the purposes of this consultation, the action area includes the 80 lin ft of shoreline on the property, and the submerged habitat adjacent to the shoreline, out 3 ft beyond MHWL (the limit of the proposed action), to the area bounded by the turbidity curtain. The substrate in the action area is composed of sand and silt, with depths of 0 ft at MHWL, and -1 ft at the Mean Low Water Line (MLWL). The action area is void of corals, submerged aquatic vegetation, and mangroves.

4 STATUS OF LISTED SPECIES AND CRITICAL HABITAT

Table 1 provides the effect determinations for ESA-listed species the USACE and/or NMFS believe may be affected by the proposed action. We believe the proposed action will have no effect on hawksbill and leatherback sea turtles, due to the species' very specific life history strategies, which are not supported at the project site. Leatherback sea turtles have a pelagic, deepwater life history, where they forage primarily on jellyfish. Hawksbill sea turtles typically inhabit inshore reef and hard bottom areas where they forage primarily on encrusting sponges. In Section 4.1, we discuss why we believe green sea turtle (NA and SA DPSs), Kemp's ridley sea turtle, loggerhead sea turtle (NWA DPS), and smalltooth sawfish (U.S. DPS) may be affected, but are not likely to be adversely affected, by the proposed action.

Species (DPS)	ESA Listing Status	Action Agency Effect Determination	NMFS Effect Determination
Sea Turtles			
Green (North Atlantic [NA] and South Atlantic [SA] distinct population segments [DPSs])	Т	NLAA	NLAA
Kemp's ridley	E	NLAA	NLAA
Leatherback	E	NLAA	NE
Loggerhead (Northwest Atlantic [NWA] DPS)	Т	NLAA	NLAA
Hawksbill	E	NLAA	NE
Fish			
Smalltooth sawfish (U.S. DPS)	Е	NLAA	NLAA
		•	
E = endangered; T = threatened; NLAA = may affect, not likely to adversely affect; NE = No effect			

 Table 1. Effects Determinations for Species (DPSs) the Action Agency or NMFS Believe

 May Be Affected by the Proposed Action

Table 2 provides the effects determinations for designated critical habitat occurring within the action area that the USACE or NMFS believe are likely to be adversely affected by the proposed action. The proposed action area is within the boundary of smalltooth sawfish designated critical habitat (CHEU). The physical and biological features essential to the conservation of the U.S. DPS of smalltooth sawfish, which provide nursery area functions are: (1) shallow, euryhaline habitats characterized by water depths between the Mean High Water Line (MHWL) and 3 ft (0.9 meters [m]) measured at Mean Lower Low Water (MLLW) and (2) red mangroves.

The proposed action will not remove or restrict access to red mangroves. While planting red mangroves could result in a beneficial effect to the red mangrove essential feature, uncertainty exists because we have no way of ensuring that this planting of red mangroves will in fact survive or what, if any, habitat function the planted mangroves would provide. Therefore, we do not evaluate potential benefits to the red mangrove essential feature in our analyses of smalltooth sawfish critical habitat. Since there are no other potential routes of effect to the red mangrove essential feature, we believe the proposed action will have no effect on the red mangrove essential feature of smalltooth sawfish critical habitat. In Section 4.2, we discuss why we believe the shallow, euryhaline essential feature is likely to be adversely affected by the proposed action.

Species	Unit	USACE Effect Determination	NMFS Effect Determination	
Smalltooth sawfish	Charlotte Harbor Estuary Unit (CHEU)	LAA	LAA, Will not destroy or adversely modify	
LAA = likely to adversely affect				

 Table 2. Effects Determinations for Designated Critical Habitat the Action Agency or

 NMFS Believe May Be Affected by the Proposed Action

4.1 Potential Routes of Effect Not Likely to Adversely Affect Listed Species

We have identified the following potential effects to ESA-listed sea turtles and smalltooth sawfish. We believe that these species are not likely to be adversely affected by the proposed inwater construction activities, as described below.

<u>Physical effects:</u> Sea turtles and smalltooth sawfish may be injured by construction equipment during riprap installation, but we believe this effect will be discountable because we expect these highly mobile species to move away from the project site if disturbed. The applicant's implementation of NMFS's *Sea Turtle and Smalltooth Sawfish Construction Conditions* will further reduce the risk by requiring all construction workers to watch for these ESA-listed species. Operation of any mechanical construction equipment will cease immediately if a sea turtle or smalltooth sawfish is seen within a 50-ft radius of the equipment. Activities will not resume until the ESA-listed species has departed the project area of its own volition.

<u>Habitat effects:</u> The project site has shallow water habitat along the shorefront that may be used by sea turtles and smalltooth sawfish for foraging or refuge. Sea turtles and smalltooth sawfish may be temporarily affected by their inability to access the project area due to their avoidance of construction activities, related noise, and physical exclusion from the project area due to blockage by turbidity curtains. We believe habitat displacement effects to sea turtles and smalltooth sawfish will be insignificant given the small project area (80 lin ft) and the limited project duration (7 days).

Permanent loss of shallow-water habitat will reduce available habitat resources in the area; however, we believe the effect of this loss to sea turtles and smalltooth sawfish will be insignificant because there is similar habitat in close proximity to the project site and ample habitat outside of the residential canal network.

The planting of two rows of red mangroves along the 80 lin ft of shoreline may create future forage and refuge habitat for sea turtles and smalltooth sawfish, but, as discussed above, we have no way of ensuring that this planting of red mangroves will in fact survive or what, if any, habitat function the planted mangroves would provide. Therefore, we conclude that this will have no effect on sea turtles and smalltooth sawfish.

Because all potential project effects to listed species were found to be discountable, insignificant, or beneficial, we conclude that the proposed action is not likely to adversely affect listed species under NMFS's purview, and effects to these species will not be discussed further in this Biological Opinion.

4.2 Potential Routes of Effect Likely to Adversely Affect Critical Habitat

We believe the proposed action is likely to adversely affect smalltooth sawfish designated critical habitat due to the permanent removal of 0.005510 acres (ac) (240 ft²) of the shallow, euryhaline habitat essential feature. Because we calculate and track losses to the shallow, euryhaline habitat essential feature of critical habitat in acres, we convert the project's effects from square feet to acres and use acres in the analyses below.² We discuss the effects of the permanent loss of this essential feature on critical habitat in the Effects of the Action on Critical Habitat section below.

4.3 Status of Critical Habitat Likely to be Adversely Affected

Smalltooth Sawfish Critical Habitat

The U.S. DPS of smalltooth sawfish was listed as endangered on April 1, 2003; however, at that time, NMFS was unable to determine critical habitat. After funding additional studies necessary for the identification of specific habitats and environmental features important for the conservation of the species, establishing a smalltooth sawfish recovery team, and reviewing the best scientific data available, NMFS issued a Final Rule (74 Federal Register [FR] 45353; see also 50 CFR 226.218) to designate critical habitat for the U.S. DPS of smalltooth sawfish on September 2, 2009. Through the additional studies, researchers identified 2 primary nursery areas in southwest Florida and centered the critical habitat designations around these nurseries. The critical habitat consists of 2 units located along the southwestern coast of Florida: the Charlotte Harbor Estuary Unit (CHEU), which is comprised of approximately 221,459 ac (346 square miles [mi²]) of coastal habitat, and the Ten Thousand Islands/Everglades Unit (TTIEU), which is comprised of approximately 619,013 ac (967 mi²) of coastal habitat.

Critical Habitat Unit Affected by this Action

This consultation focuses on an activity occurring in the CHEU, which encompasses portions of Charlotte and Lee Counties (Figure 2). The CHEU is comprised of Charlotte Harbor, Gasparilla Sound, Matlacha Pass, Pine Island Sound, San Carlos Bay, and Estero Bay. The unit is fed by the Myakka and Peace Rivers to the north and the Caloosahatchee River to the east. A series of passes between barrier islands connect the CHEU with the Gulf of Mexico. The CHEU is a relatively shallow estuary with large areas of submerged aquatic vegetation, oyster bars, saltwater marsh, freshwater wetlands, and mangroves. Freshwater flows from the Caloosahatchee River are controlled by the Franklin Lock and Dam, which periodically releases water, which thereby affects downstream salinity regimes. The CHEU boundaries are defined in detail in the Final Rule (74 FR 45353; see also 50 CFR 226.218).

 $^{^{2}}$ 1 square foot = 0.0000229568 acres

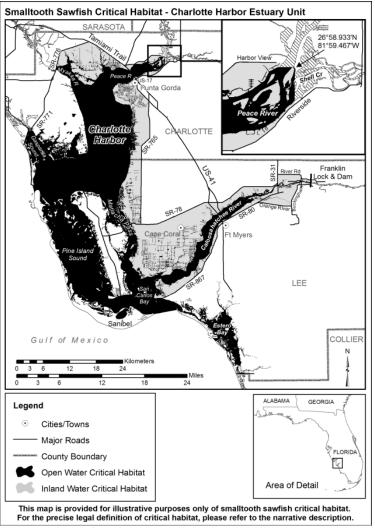


Figure 2. Map of smalltooth sawfish critical habitat - CHEU

Essential Features of Critical Habitat

The recovery plan developed for the smalltooth sawfish, which represents NMFS's best judgment about the objectives and actions necessary for the species' recovery, identified a need to increase the number of juvenile smalltooth sawfish developing into adulthood by protecting or restoring nursery habitat (NMFS, 2009). NMFS determined that without sufficient habitat, the population was unlikely to increase to a level associated with low extinction risk and de-listing. Therefore, within the 2 critical habitat units NMFS identified 2 habitat features essential for the conservation of this species: (1) red mangroves, and (2) shallow, euryhaline habitats characterized by water depths between the MHWL and 3 ft (0.9 m) measured at MLLW (Final Rule, 74 FR 45353). These essential features of critical habitat provide juveniles refuge from predation and forage opportunities within their nursery habitat. One or both of these essential features must be present in an action area for it to function as critical habitat for smalltooth sawfish.

Habitat Use

Juvenile smalltooth sawfish, identified as those up to 3 years of age or approximately 8 ft (2.4 m) in length (C. A. Simpfendorfer, Poulakis, O'Donnell, & Wiley, 2008), inhabit the shallow waters of estuaries and can be found in sheltered bays, dredged canals, along banks and sandbars, and in rivers (NMFS, 2000). Juvenile smalltooth sawfish occur in euryhaline waters (i.e., waters with a wide range of salinities) and are often closely associated with muddy or sandy substrates, and shorelines containing red mangroves (C.A. Simpfendorfer, 2001, 2003). The structural complexity of red mangrove prop roots creates a unique habitat used by a variety of fish, invertebrates, and birds. Juvenile smalltooth sawfish, particularly young-of-the-year (YOY) (measuring less than 39.4 inches (in) [100 centimeters (cm)] in length), use these areas as both refuge from predators and forage grounds, taking advantage of the large number of fish and invertebrates found there.

Tracking data from the Caloosahatchee River in Florida indicate very shallow depths and specific salinity ranges are important abiotic factors influencing juvenile smalltooth sawfish movement patterns, habitat use, and distribution (Colin A Simpfendorfer et al., 2011). An acoustic tagging study in a developed region of Charlotte Harbor, Florida, identified the importance of mangroves in close proximity to shallow-water habitat for juvenile smalltooth sawfish, stating that juveniles generally occur in shallow water within 328 ft (100 m) of mangrove shorelines (C.A. Simpfendorfer, Wiley, & Yeiser, 2010). Juvenile smalltooth sawfish spend the majority of their time in waters shallower than 13 ft (4 m) deep (C.A. Simpfendorfer et al., 2010) and are seldom found deeper than 32 ft (10 m) (G.R. Poulakis & Seitz, 2004). C.A. Simpfendorfer et al. (2010) also indicated the following developmental differences in habitat use: the smallest YOY juveniles generally used water shallower than 1.6 ft (0.5 m), had small home ranges, and exhibited high levels of site fidelity. Although small juveniles exhibit high levels of site fidelity for specific nursery habitats for periods of time lasting up to 3 months (Wiley & Simpfendorfer, 2007), they undergo small movements coinciding with changing tidal stages. These movements often involve moving from shallow sandbars at low tide and among red mangrove prop roots at higher tides (C.A. Simpfendorfer et al., 2010), behavior likely to reduce the risk of predation (C. A. Simpfendorfer, 2006). As juveniles increase in size, they begin to expand their home ranges (C.A. Simpfendorfer et al., 2010; Colin A Simpfendorfer et al., 2011), eventually moving to more offshore habitats where they likely feed on larger prey and eventually reach sexual maturity.

Researchers have identified several areas within the Charlotte Harbor Estuary that are disproportionately more important to juvenile smalltooth sawfish, based on intra- or inter-annual capture rates during random sampling events within the estuary (G. R. Poulakis, 2012; Gregg R. Poulakis, Stevens, Timmers, Wiley, & Simpfendorfer, 2011). The areas, which were termed "hotspots," correspond with areas where public encounters are most frequently reported. Use of these hotspots can be variable within and among years based on the amount and timing of freshwater inflow. Smalltooth sawfish use hotspots further upriver during drought (i.e., high salinity) conditions and hotspot areas closer to the mouth of the Caloosahatchee River during times of high freshwater inflow (Gregg R. Poulakis et al., 2011). At this time, researchers are unsure what specific biotic (e.g., presence or absence of predators and prey) or abiotic (e.g., flow rate, water temperature, etc.) factors influence this habitat selection. Still, they believe a variety of conditions in addition to salinity, such as temperature, dissolved oxygen, water depth,

shoreline vegetation, and food availability, may influence smalltooth sawfish habitat selection (Gregg R. Poulakis et al., 2011).

Status and Threats to Critical Habitat

Modification and loss of smalltooth sawfish critical habitat is an ongoing threat contributing to the current status of the species. Activities such as agricultural and urban development, commercial activities, dredge-and-fill operations, boating, erosion, and diversions of freshwater runoff contribute to these losses (SAFMC, 1998). Large areas of coastal habitat were modified or lost between the mid-1970s and mid-1980s within the United States (Dahl & Johnson, 1991; USFWS, 1999). Since then, rates of loss have decreased even though habitat loss continues. Between 1998 and 2004, approximately 2,450 ac (3.8 mi²) of intertidal wetlands consisting of mangroves or other estuarine shrubs were lost along the Atlantic and Gulf coasts of the United States (Stedman & Dahl, 2008). In another study, Orlando et al. (1994) analyzed 18 major southeastern estuaries and recorded over 703 mi (1,131 kilometers [km]) of navigation channels and 9,844 mi (15,842 km) of shoreline with modifications. Additionally, changes to the natural freshwater flows into estuarine and marine waters through construction of canals and other water-control devices have altered the temperature, salinity, and nutrient regimes, reduced both wetlands and submerged aquatic vegetation coverage, and degraded vast areas of coastal habitat utilized by smalltooth sawfish (Gilmore, 1995; Quigley & Flannery, 2002; Reddering, 1988; Whitfield & Bruton, 1989). Juvenile sawfish and their critical habitat are particularly vulnerable to these kinds of habitat losses or alterations due to the juveniles' affinity for (and developmental need of) shallow, estuarine systems. Although many forms of habitat modification are currently regulated, some permitted direct and/or indirect damage to habitat from increased urbanization still occurs and is expected to continue in the future.

In Florida, coastal development often involves the removal of mangroves, the armoring of shorelines through seawall construction, and the dredging of canals. This is especially apparent in master plan communities such as Cape Coral and Punta Gorda which are located within the Charlotte Harbor Estuary. These communities were created through dredge-and-fill projects to increase the amount of waterfront property available for development, but in doing so, developers removed the majority of red mangrove habitat from the area. The canals created by these communities require periodic dredging for boat access, further affecting the shallow, euryhaline essential feature of critical habitat. Development continues along the shorelines of Charlotte Harbor in the form of docks, boat ramps, shoreline armoring, utility projects, and navigation channel dredging.

To protect critical habitat, federal agencies must ensure that their activities are not likely to result in the destruction or adverse modification of the physical and biological features that are essential to the conservation of sawfish, or the species' ability to access and use these features (ESA Section 7(a)(2); see also 50 CFR 424.12(b) [discussing essential features]). Therefore, proposed actions that may impact critical habitat require an analysis of potential impacts to each essential feature. As mentioned previously, there are 2 essential features of smalltooth sawfish critical habitat: (1) red mangroves; and (2) shallow, euryhaline habitats characterized by water depths between the MHWL and 3 ft (0.9 m) measured at MLLW. The USACE oversee the permitting process for residential and commercial marine development in the CHEU. The Florida Department of Environmental Protection (FDEP) and their designated authorities also regulate mangrove removal in Florida. All red mangrove removal permit requests within smalltooth sawfish critical habitat necessitate ESA Section 7 consultation. NMFS Protected Resources Division tracks the loss of these essential features of smalltooth sawfish critical habitat.

Threats to Critical Habitat

Dock and Boat Ramp Construction

The USACE recommends that applicants construct docks in accordance with the NMFS-USACE *Dock Construction Guidelines in Florida for Docks or Other Minor Structures Constructed in or over Submerged Aquatic Vegetation (SAV), Marsh, or Mangrove Habitat* ("Dock Construction Guidelines") when possible. The current dock construction guidelines allow for some amount of mangrove removal; however, it is typically restricted to either (1) trimming to facilitate a dock, or (2) complete removal up to the width of the dock extending toward open water, which the guidelines define as a width of 4 ft. Installation or replacement of boat ramps is often part of larger projects such as marinas, bridge approaches, and causeways where natural and previously created deepwater habitat access channels already exist. Boat ramps can result in the permanent loss of both the red mangrove and the shallow, euryhaline habitat features of critical habitat for smalltooth sawfish.

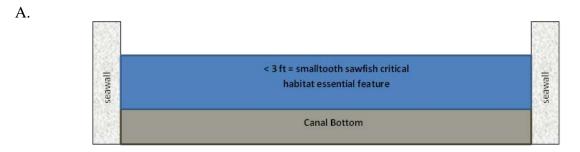
Marina Construction

Marinas have the potential to adversely affect aquatic habitats. Marinas are typically designed to be deeper than 3 ft MLLW to accommodate vessel traffic; therefore, most existing marinas lacking essential features are unlikely to function as critical habitat for smalltooth sawfish. The expansion of existing marinas and creation of new marinas can result in the permanent loss of large areas of this nursery habitat.

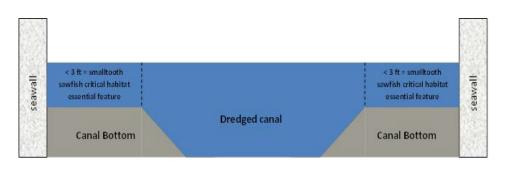
Bulkhead and Seawall Construction

Bulkheads and other shoreline stabilization structures are used to protect adjacent shorelines from wave and current action and to enhance water access. These projects may adversely impact critical habitat for smalltooth sawfish by removal of the essential features through direct filling and dredging to construct vertical or riprap seawalls. Generally, vegetation plantings, sloping riprap, or gabions are environmentally-preferred shoreline stabilization methods instead of vertical seawalls because they provide better quality fish and wildlife habitat. Nevertheless, placement of riprap material removes more of the shallow euryhaline essential feature than a vertical seawall. Also, many seawalls built along unconsolidated shorelines require the removal of red mangroves to accommodate the seawalls.

Cable, Pipeline, and Transmission Line Construction


While not as common as other activities, excavation of submerged lands is sometimes required for installing cables, pipelines, and transmission lines. Construction may also require temporary or permanent filling of submerged habitats. Open-cut trenching and installation of aerial transmission line footers are activities that have the ability to temporarily or permanently impact critical habitat for smalltooth sawfish.

Transportation Infrastructure Construction


Potential adverse effects from federal transportation projects in smalltooth sawfish critical habitat (CHEU) include operations of the Federal Highway Administration, USACE, and the Federal Emergency Management Agency. Construction of road improvement projects typically follow the existing alignments and expand to compensate for the increase in public use. Transportation projects may impact critical habitat for smalltooth sawfish through installation of bridge footers, fenders, piles, and abutment armoring, or through removal of existing bridge materials by blasting or mechanical efforts.

Dredging

Riverine, nearshore, and offshore areas are dredged for navigation, construction of infrastructure, and marine mining. An analysis of 18 major southeastern estuaries conducted in 1993-1994 demonstrated that over 7,000 kilometers of navigation channels have already been dredged (Orlando et al., 1994). Habitat effects of dredging include the loss of submerged habitats by disposal of excavated materials, turbidity and siltation effects, contaminant release, alteration of hydrodynamic regimes, and fragmentation of physical habitats (GMFMC, 1998, 2005; SAFMC, 1998). In the CHEU, dredging to maintain canals and channels constructed prior to the critical habitat designation, limits the amount of available shallow, euryhaline essential feature to the edges of waterways and these dredging activities can disturb juveniles that are using these areas. At the time of critical habitat designation, many previously dredged channels and canals existed within the boundaries of the critical habitat units; however, we are unsure which of those contained the shallow-water essential feature at that time. It is likely that many of these channels and canals were originally dredged deeper than -3 ft MLLW, but they have since shoaled in and now contain the essential feature of shallow, euryhaline habitat. Therefore, maintenance dredging impacts are counted as a loss to this essential feature, even though the areas may or may not have contained the essential feature at time of designation (see Figure 3, Diagrams A and B).

B.

С.

Figure 3. Impacts to smalltooth sawfish critical habitat essential feature due to dredging and sea level rise. Diagram A depicts a cross section of a historically dredged channel/canal within the boundaries of the critical habitat units that has not been maintained. Diagram B depicts the typical cross section of a maintenance dredged channel/canal. Diagram C depicts a cross section of a maintained dredged channel/canal after sea level rise of > 1 ft.

Construction, Operations and Maintenance of Impoundments and Other Water Level Controls Federal agencies such as the USACE have historically been involved in large water control projects in Florida. Agencies sometimes propose impounding rivers and tributaries for such purposes as flood control, salt water intrusion prevention, or creation of industrial, municipal, and agricultural water supplies. Projects to repair or replace water control structures may affect smalltooth sawfish critical habitat by limiting sufficient freshwater discharge which could alter the salinity of estuaries. The ability of an estuary to function as a nursery depends upon the quantity, timing, and input location of freshwater inflows (Garmestani & Percival, 2005; Norton et al., 2012; USEPA, 1994). Estuarine ecosystems are vulnerable to the following man-made disturbances: (1) decreases in seasonal inflow caused by the removal of freshwater upstream for agricultural, industrial, and domestic purposes; (2) contamination by industrial and sewage discharges; (3) agricultural runoff carrying pesticides, herbicides, and other toxic pollutants; and (4) eutrophication (e.g., influx of nutrients such as nitrates and phosphates most often from fertilizer runoff and sewage) caused by excessive nutrient inputs from a variety of nonpoint and point sources. Additionally, rivers and their tributaries are susceptible to natural disturbances, such as floods and droughts, whose effects can be exacerbated by these man-made disturbances.

As stated above, smalltooth sawfish show an affinity for a particular salinity range, moving downriver during wetter months and upriver during drier months to remain within that range (Colin A Simpfendorfer et al., 2011). Therefore, water management decisions that affect salinity regimes may impact the functionality of critical habitat. This may result in smalltooth sawfish following specific salinity gradients into less advantageous habitats (e.g., areas with less shallow-water or red mangrove habitat). Furthermore, large changes in water flow over short durations would likely escalate movement patterns for smalltooth sawfish, thereby increasing predation risk and energy output. Researchers are currently looking into the effects of largescale freshwater discharges on smalltooth sawfish and their designated critical habitat. The most vulnerable portion of the juvenile sawfish population to water-management outfall projects appears to be smalltooth sawfish in their first year of life. Newborn smalltooth sawfish remain in smaller areas irrespective of salinity, which potentially exposes them to greater osmotic stress (a sudden change in the solute concentration around a cell, causing a rapid change in the movement of water across its cell membrane), and impacts the nursery functions of sawfish critical habitat (Gregg R. Poulakis, Stevens, Timmers, Stafford, & Simpfendorfer, 2013; Colin A Simpfendorfer et al., 2011).

Climate Change Threats

The Intergovernmental Panel on Climate Change (IPCC) has stated that global climate change is unequivocal and its impacts to coastal resources may be significant (IPCC, 2007). There is a large and growing body of literature on past, present, and future impacts of global climate change induced by human activities (i.e., global warming mostly driven by the burning of fossil fuels). The latest report by the IPCC (2013) is more explicit, stating that, "science now shows with 95% certainty that human activity is the dominant cause of observed warming since the mid-twentieth century." Some of the anticipated outcomes are sea level rise, increased frequency of severe weather events, and changes in air and water temperatures. NOAA's climate change web portal provides information on the climate-related variability and changes that are exacerbated by human activities (http://www.climate.gov/#understandingClimate). The EPA's climate change webpage also provides basic background information on these and other measured or anticipated effects (http://www.epa.gov/climatechange/index.html).

Though the impacts on smalltooth sawfish cannot, for the most part, be predicted with any degree of certainty, we can project some effects to sawfish critical habitat. We know that both essential features (red mangroves and shallow, euryhaline waters less than 3 ft deep at MLLW) will be impacted by climate change. Sea level rise is expected to exceed 3.3 ft (1 m) globally by 2100, according to the most recent publications, exceeding the estimates of the Fourth Assessment of the IPCC (Meehl et al., 2007; Pfeffer, Harper, & O'Neel, 2008; Rahmstorf et al., 2009). Mean sea level rise projections have increased since the Fourth Assessment because of the improved physical understanding of the components of sea level, the improved agreement of process-based models with observations, and the inclusion of ice-sheet dynamical changes (IPCC 2013). A 1-m sea level rise in the state of Florida is within the range of recent estimates by 2080 (Pfeffer et al., 2008; Rahmstorf et al., 2009).

Sea level increases would affect the shallow-water essential feature of smalltooth sawfish critical habitat within the CHEU. A 2010 climate change study by the Massachusetts Institute of

Technology (MIT) forecasted sea level rise in a study area with significant overlap with the CHEU (Vargas-Moreno & Flaxman, 2010). The study investigated possible trajectories of future transformation in Florida's Greater Everglades landscape relative to 4 main drivers: climate change, shifts in planning approaches and regulations, population change, and variations in financial resources. MIT used (IPCC, 2007) sea level modeling data to forecast a range of sea level rise trajectories from low, to moderate, to high predictions (Figure 4). The effects of sea level rise on available shallow-water habitat for smalltooth sawfish would be exacerbated in areas where there is shoreline armoring (e.g., seawalls). This is especially true in canals where the centerlines are maintenance-dredged deeper than 3 ft (0.9 m) for boat accessibility. In these areas, the areas that currently contain the essential feature depth (less than 3 ft at MLLW) will be reduced along the edges of the canals as sea level rises (see previous Figure 3, Diagram C).

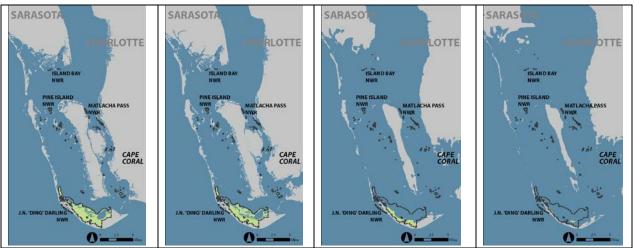


Figure 4. Possible trajectories of future transformation in Florida's Greater Everglades landscape due to sea level rise. From left to right: current shoreline, +3.5 in (+9 cm); +18.5 in (+47 cm); and +38.97 in (+99 cm) sea level rise by 2060.³

Along the Gulf Coast of Florida, and south Florida in particular, rises in sea level will impact mangrove resources. As sea levels rise, mangroves will be forced landward in order to remain at a preferred water inundation level and sediment surface elevation, which is necessary for successful growth. This retreat landward will not keep pace with conservative projected rates of elevation in sea level (Eric L. Gilman, Ellison, Duke, & Field, 2008). This forced landward progression poses the greatest threat to mangroves in areas where there is limited or no room for landward or lateral migration (Semeniuk, 1994). Such is the case in areas of the CHEU where landward mangrove growth is restricted by shoreline armoring and coastal development. This man-made barrier will prohibit mangroves from moving landward and will result in the loss of the mangrove essential feature.

Other threats to mangroves result from climate change: fluctuations in precipitation amounts and distribution, seawater temperature, carbon dioxide (CO_2) levels, and damage to mangroves from increasingly severe storms and hurricanes (McLeod & Salm, 2006). A 25% increase in precipitation globally is predicted by 2050 (McLeod & Salm, 2006), but the specific geographic

³ Adapted from Vargas-Moreno, J. C. and M. Flaxman. Addressing the Challenges of Climate Change in the Greater Everglades Landscape. Project Sheet. November, 2010. Department of Urban Planning, MIT.

distribution will vary, leading to increases and decreases in precipitation at the regional level. Changes in precipitation patterns caused by climate change may adversely affect the growth of mangroves and their distribution (Field, 1995; Snedaker, 1995). Decreases in precipitation will increase salinity and inhibit mangrove productivity, growth, seedling survival, and spatial coverage (Burchett, Meredith, Pulkownik, & Pulkownik, 1984). Decreases in precipitation may also change mangrove species composition, favoring more salt-tolerant types (Ellison, 2010). Increases in precipitation may benefit some species of mangroves, increasing spatial coverage and allowing them to out-compete other salt marsh vegetation (Harty, 2004). Even so, potential mangrove expansion requires suitable habitat for mangroves to increase their range, which depends to a great extent on patterns and intensity of coastal development (i.e., bulkhead and seawall construction).

Seawater temperature changes will have potential adverse effects on mangroves as well. Many species of mangroves show an optimal shoot density in sediment temperatures between $59^{\circ}-77^{\circ}F$ ($15^{\circ}-25^{\circ}C$) (Hutchings & Saenger, 1987). Yet, at temperatures between $77^{\circ}-95^{\circ}F$ ($25^{\circ}-35^{\circ}C$), many species begin to show a decline in leaf structure and root and leaf formation rates (Saenger & Moverley, 1985). Temperatures above $95^{\circ}F$ lead to adverse effects on root structure and survivability of seedlings (UNESCO, 1992) and temperatures above $100.4^{\circ}F$ ($38^{\circ}C$) lead to a cessation of photosynthesis and mangrove mortality (Andrews, Clough, & Muller, 1984). Although impossible to forecast precisely, sea surface ocean temperatures are predicted to increase $1.8^{\circ}-3.6^{\circ}F$ ($1^{\circ}-2^{\circ}C$) by 2060 (Chapter 11 (IPCC, 2013)), which will in turn impact underlying sediment temperatures along the coast. If mangroves shift pole-ward in response to temperature increases, they will at some point be limited by temperatures at the lower end of their optimal range and available recruitment area. This is especially true when considering already armored shorelines in residential communities such as those within and surrounding the CHEU of critical habitat for smalltooth sawfish.

As atmospheric CO_2 levels increase, mostly resulting from man-made causes (e.g., burning of fossil fuels), the world's oceans will absorb much of this CO_2 , causing potential increases in photosynthesis and mangrove growth rates. This increase in growth rate, however, would be limited by lower salinities expected from CO_2 absorption in the oceans (Ball, Cochrane, & Rawson, 1997), and by the availability of undeveloped coastline for mangroves to expand their range. A secondary effect of increased CO_2 concentrations in the oceans is the deleterious effect on coral reefs' ability to absorb calcium carbonate (Hoegh-Guldberg et al., 2007), and subsequent reef erosion. Eroded reefs may not be able to buffer mangrove habitats from waves, especially during storm/hurricane events, causing additional physical effects.

Finally, the anticipated increase in the severity of storms and hurricanes may also impact mangroves. Tropical storms are expected to increase in intensity and/or frequency, which will directly impact existing mangroves that are already adversely impacted by increased seawater temperatures, CO₂, and changes in precipitation (Cahoon et al., 2003; Trenberth, 2005). The combination of all of these factors may lead to reduced mangrove height (Ning, Turner, Doyle, & Abdollahi, 2003). Further, intense storms could result in more severe storm surges and lead to potential changes in mangrove community composition, mortality, and recruitment (E.L. Gilman et al., 2006). Increased storms surges and flooding events could also affect mangroves' ability to

photosynthesize (E.L. Gilman et al., 2006) and the oxygen concentrations in the mangrove lenticels (Ellison, 2010).

5 ENVIRONMENTAL BASELINE

This section describes the effects of past and ongoing human and natural factors contributing to the current status of the affected smalltooth sawfish critical habitat in the action area. The environmental baseline describes the critical habitat's health based on information available at the time of this consultation.

By regulation, environmental baselines for Biological Opinions include the past and present impacts of all state, federal, or private actions and other human activities in, or having effects in, the action area. We identify the anticipated impacts of all proposed federal projects in the specific action area of the consultation at issue that have already undergone formal or early Section 7 consultation (as defined in 50 CFR 402.11), as well as the impact of state or private actions, or the impacts of natural phenomena, which are concurrent with the consultation in process (50 CFR 402.02).

Focusing on the current state of critical habitat is important because in some areas critical habitat features will commonly exhibit, or be more susceptible to, adverse responses to stressors than they would be in other areas, or may have been exposed to unique or disproportionate stresses. These localized stress responses or stressed baseline conditions may increase the severity of the adverse effects expected from the proposed action.

5.1 Status of Designated Critical Habitat within the Action Area

The action area is within the boundaries of the CHEU of designated smalltooth sawfish critical habitat. It is located within a residential canal system in the CHEU and not within or near a known "hotspot" such as those areas identified within the Caloosahatchee River (G. R. Poulakis, 2012; Gregg R. Poulakis et al., 2011). The closest hotspot is approximately 6 miles away. The applicant reports that the action area is void of corals, submerged aquatic vegetation, and mangroves. The substrate in the action area is composed of sand and silt, with depths of 0 ft at MHWL, and -1 ft at the Mean Low Water Line (MLWL). There have been no sightings of smalltooth sawfish reported within the project's canal system; however, there have been several sightings of juvenile smalltooth sawfish (birth to 340 cm total length) at the entrance to Dawson Canal, in the Saint James Creek, and throughout the San Carlos Bay area within approximately a 1.3-mi radius of the action area (ISED, unpublished data last updated May 2014).

5.2 Factors Affecting Critical Habitat within the Action Area

Federal Actions

We have consulted on several USACE shoreline stabilization and dock construction projects in the greater residential canal system where the project is located since the effective date of critical habitat designation (October 2, 2009). However, other than the proposed action, no other federally permitted projects are known to have occurred or have had effects within the action area, as per a review of the NMFS PRD's completed consultation database by the consulting biologist on November 15, 2017.

State or Private Actions

Examples of nonfederal activities that may adversely affect designated critical habitat for smalltooth sawfish in the action area include residential in-water activities that do not require federal permits or otherwise have a federal nexus. The direct and indirect impacts from these activities are difficult to quantify but may include loss or degradation of red mangroves or shallow, euryhaline habitat from unauthorized mangrove trimming, shoreline stabilization, or in-water construction. NMFS does not have any knowledge of state or private actions occurring in the action area that would not also require a federal permit; the likelihood of a project occurring in the action area that does not require a federal permit for in-water construction work is very small. Where possible, conservation actions in ESA Section 10 permits, ESA Section 6 cooperative agreements, and state permitting programs are being implemented or investigated to monitor or study impacts from these sources.

Other Potential Sources of Impacts to the Environmental Baseline

Stochastic events, such as hurricanes, are common throughout the range of smalltooth sawfish, especially in the current core of its range (i.e., south and southwest Florida). These events are by nature unpredictable and their effect on the survival and recovery of the species and on critical habitat are unknown; however, they have the potential to impede the survival and recovery directly if animals die as a result of them, or indirectly if habitat, especially critical habitat, is damaged as a result of these disturbances. In 2017, Hurricane Irma likely damaged habitat, including mangroves, in and around the action area.

Conservation and Recovery Actions Shaping the Environmental Baseline

Federal Essential Fish Habitat (EFH) consultation requirements pursuant to the Magnuson-Stevens Fishery Conservation and Management Act (Magnuson-Stevens Act) can minimize and mitigate for losses of wetland and preserve valuable foraging and developmental habitat that is used by juvenile smalltooth sawfish, including areas that has been designated as smalltooth sawfish critical habitat. NMFS has designated mangrove and estuarine habitats as EFH as recommended by the Gulf of Mexico Fishery Management Council. Both essential features are critical components of areas designated as EFH and receive a basic level of protection under the Magnuson-Stevens Act to the extent that the Act requires minimization of impacts to EFH resources.

6 EFFECTS OF THE ACTION ON CRITICAL HABITAT

The proposed action is located within the boundary of the CHEU of smalltooth sawfish designated critical habitat. We believe the proposed action is likely to affect the essential features of designated critical habitat as described below.

6.1 Shallow, Euryhaline Essential Feature Impacts

The proposed action will result in a permanent loss of 0.005510 ac of the shallow, euryhaline habitat essential feature that provides forage, shelter, or other nursery habitat functions for juvenile smalltooth sawfish. NMFS estimated that the total amount of shallow, euryhaline habitat in CHEU at the effective date of species listing (May 1, 2003) was approximately 84,480 ac. While the available shallow, euryhaline essential feature will be diminished, the proposed action is not severing or preventing juvenile smalltooth sawfish access to alternate habitat with this essential feature in the surrounding area. Still, some ecological function provided to juvenile

smalltooth sawfish currently using the area, and conservation benefits to future juvenile sawfish in terms of the shallow, euryhaline essential feature, will be lost; therefore, we believe the project is likely to adversely affect critical habitat in the CHEU.

6.2 Red Mangrove Essential Feature Impacts

For the reasons discussed above, we believe the proposed action will have no effect on the red mangrove essential feature of smalltooth sawfish critical habitat.

7 CUMULATIVE EFFECTS

Cumulative effects include the effects of future state, tribal, or local private actions that are reasonably certain to occur in the action area considered in this Opinion. Future federal actions that are unrelated to the proposed action are not considered in this section because they require separate consultation pursuant to Section 7 of the ESA (50 CFR 402.02).

Many threats to smalltooth sawfish critical habitat are expected to be exacerbated by the effects of global climate change. Potential increases in sea level may impact the availability of nursery habitat, particularly shallow, euryhaline habitat and red mangrove lined, low-lying coastal shorelines (IPCC 2014; Wanless et al. 2005). For example, nursery habitat could be negatively affected by increased temperatures, salinities, and acidification of coastal waters (Snedaker 1995, Wanless et al. 2005, Scavia et al., 2002), as well as increased runoff and erosion due to the expected increase in extreme storm events (IPCC 2014; Wanless et al. 2005). These alterations of the marine environment due to global climate change could affect the distribution of shallow, euryhaline habitat, which would ultimately affect the distribution, physiology, and growth rates of red mangroves. These alterations could potentially eliminate red mangroves from particular areas. The magnitude of the effects of global climate change on smalltooth sawfish critical habitat are difficult to predict, yet, when combined with the cyclical loss of habitat from extreme storm events, a decrease in the red mangrove essential feature of smalltooth sawfish critical habitat is likely (Norton et al. 2012; Scavia et al. 2002). However, this proposed action is of such a small scale, scope, and limited time frame that it is not very likely to contribute to, or be affected cumulatively by, climate change.

Smalltooth sawfish habitat, in general, and designated critical habitat, specifically, have been degraded or modified throughout the southeastern U.S. from agriculture, urban development, commercial activities, channel dredging, boating activities, and the diversion of freshwater runoff. No future actions with effects beyond those already described, and no other future state, tribal, or local private actions, are reasonably certain to occur in the action area. The man-made canals within the CHEU will likely continue to experience the same types of actions described in the Status of Designated Critical Habitat within the Action Area section. These threats include shoreline armoring, canal dredging, and dock construction.

8 INTEGRATION AND SYNTHESIS

8.1 Critical Habitat Destruction/Adverse Modification Analysis

NMFS's regulations define *Destruction or adverse modification* to mean "a direct or indirect alteration that appreciably diminishes the value of critical habitat for the conservation of a listed

species. Such alterations may include, but are not limited to, those that alter the physical or biological features essential to the conservation of a species or that preclude or significantly delay development of such features" (50 CFR 402.02). Other alterations that may destroy or adversely modify critical habitat may include impacts to the area itself, such as those that would impede access to or use of the essential features. We intend the phrase "significantly delay" in development of essential features to encompass a delay that interrupts the likely natural trajectory of the development of physical and biological features in the designated critical habitat to support the species' recovery. NMFS will generally conclude that a Federal action is likely to "destroy or adversely modify" designated critical habitat if the action results in an alteration of the quantity or quality of the essential physical or biological features of designated critical habitat, or that precludes or significantly delays the capacity of that habitat to develop those features over time, and if the effect of the alteration is to appreciably diminish the value of critical habitat for the conservation of the species.

This analysis takes into account the geographic and temporal scope of the proposed action, recognizing that "functionality" of critical habitat necessarily means that it must now and must continue in the future to support the conservation of the species and progress toward recovery. The analysis takes into account any changes in amount, distribution, or characteristics of the critical habitat that will be required over time to support the successful recovery of the species. Destruction or adverse modification does not depend strictly on the size or proportion of the area adversely affected, but rather on the role the action area and the affected critical habitat serves with regard to the function of the overall critical habitat designation, and how that role is affected by the action.

The smalltooth sawfish recovery plan identifies 3 recovery objectives to help facilitate recruitment of juveniles into the recovering adult population (NMFS, 2009). Recovery Objective #1 is to minimize human interactions and associated injury and mortality; this objective is not relevant to critical habitat. Recovery Objective #2 is to protect and/or restore smalltooth sawfish habitats. Recovery Objective #3 is to ensure smalltooth sawfish abundance increases substantially and the species reoccupies areas from which it had previously been extirpated. Our analysis evaluates whether the anticipated impacts to critical habitat associated with the proposed action would interfere with Recovery Objectives #2 and #3, and ultimately, the conservation objective behind the designated critical habitat—that is, facilitation of juvenile recruitment into a recovering adult population.

8.2 Protect and Restore Smalltooth Sawfish Habitat (Recovery Objective #2)

In establishing Recovery Objective #2, we recognized that recovery and conservation of smalltooth sawfish depends on the availability and quality of nursery habitats. Historically, juvenile sawfish were documented in mangrove and non-mangrove habitat in the southeastern U.S. Due to the protections provided by the Ten Thousand Islands National Wildlife Refuge, Everglades National Park, and the Florida Keys National Marine Sanctuary, much of the historic juvenile smalltooth sawfish habitat in southwest Florida has remained high-quality juvenile habitat. Recovery Regions G, H, and I in southwest Florida extend from the Manatee River on the west coast of Florida, south through Everglades National Park and the Florida Keys to Caesar Creek on the southeast coast of Florida. The CHEU is in Recovery Region G. While much of

the CHEU is protected by the Charlotte Harbor Preserve State Park system, it is also highly anthropomorphically influenced (See Section 5 "Environmental Baseline").

The recovery plan states that for the 3 recovery regions with remaining high-quality habitats (i.e., Recovery Regions G, H, and I), juvenile habitats "must be maintained over the long term at or above 95% of the acreage available at the time of listing" (NMFS, 2009). To ensure that a proposed action will not impede Recovery Objective #2, we determine whether the critical habitat unit will be able to maintain 95% of the areas containing each essential feature after taking into account project impacts in the context of the status of the critical habitat, the environmental baseline, and cumulative effects. While the CHEU is only a part of the larger Recovery Region G, and the 95% protection threshold applies across not just Recovery Region G, but also Recovery Regions H and I, the threshold is still useful for evaluating the impacts at the individual recovery region level and for sub-units of the recovery regions. The CHEU contains the only known nursery areas within Recovery Region G, thus we believe it is appropriate to evaluate impacts at the level of the unit. In addition, functioning critical habitat contains either one or both of the essential features, and the essential features were selected based on their role in facilitating recruitment of juvenile animals into the adult population, which the recovery plan likewise seeks to conserve and protect. Consequently, we also believe it is appropriate to consider whether 95% of each of the essential features of critical habitat in the CHEU is maintained. Therefore, below we estimate the percent impact the proposed action will have on the shallow, euryhaline habitat essential feature of critical habitat within the CHEU.

Shallow, Euryhaline Essential Feature Impacts

NMFS estimated that 84,480 ac of shallow, euryhaline habitat (abbreviated SH throughout this section) was available within the CHEU at the effective date of species listing (i.e., May 1, 2003) (Table 3, Line 1). As discussed above, we must determine whether a proposed action's impact will interfere with long-term maintenance of this essential feature at or above 95% of the acreage available at the time of listing; however, loss of critical habitat was not formally monitored until the effective date of critical habitat designation (i.e., October 2, 2009). Therefore, we must estimate habitat loss that occurred during the period between the effective date of species listing and the effective date of critical habitat designation (i.e., May 1, 2003 – October 2, 2009).

To do this, we use an 84-month dataset of our completed Section 7 consultations (October 3, 2009 – September 30, 2016), including yearly losses due to programmatic consultations, to generate a rate of loss that can then be used to back-calculate the loss of SH between the effective date of species listing and the effective date of critical habitat designation. We rely on this dataset because using approximately 7 years of information helps avoid over- or underestimating the rate of habitat loss due to any potential inter-annual variability associated with economic growth and contraction that may have occurred in that time. NMFS consultations completed during this time indicate that 17.60 ac of SH in the CHEU was lost due to federal agency actions.

Based on these losses, we estimate a monthly loss rate of SH in the CHEU using the following equation:

Monthly loss rate of SH (CHEU) = SH lost through federal agency actions \div 84 months Monthly loss rate of SH (CHEU) = 17.60 ac \div 84 months Monthly loss rate of SH (CHEU) = 0.21 ac per month

Assuming the same monthly loss rate, we back-calculate the loss of SH in the 77 months between the effective date of species listing and the effective date of critical habitat designation (i.e., May 1, 2003 – October 2, 2009) for the CHEU using the following equation:

SH lost prior to critical habitat designation (CHEU) = 0.21 ac per month × 77 months SH lost prior to critical habitat designation (CHEU) = 16.17 ac (Table 3, Line 2)

Next, we determine the loss of SH since the effective date of critical habitat designation. From the effective date of critical habitat designation through September 30, 2017, 20.59 ac of SH in the CHEU has been lost due to federal agency actions (Table 3, Line 3).⁴ While this amount of loss only takes into account projects with a federal nexus requiring ESA Section 7 consultation, there are very few projects without a federal nexus that could affect shallow, euryhaline habitat in the CHEU as most in-water construction projects require federal authorization.

Using this information, we calculate the SH currently available in CHEU using the following equation:

SH currently available (CHEU) = SH at time of species listing - (SH lost prior to critical habitat designation + SH lost since critical habitat designation) SH currently available (CHEU) = 84,480 ac - (16.17 ac + 20.59 ac) SH currently available (CHEU) = 84,443.24 ac (Table 3, Line 4)

We calculate the amount of SH that must be maintained in the CHEU per Recovery Objective #2 using the following equation:

SH that must be maintained (CHEU) = SH at time of species listing \times 95% SH that must be maintained (CHEU) = 84,480 ac \times 0.95 SH that must be maintained (CHEU) = 80,256 ac (Table 3, Line 5)

The proposed action would result in the permanent loss of 0.005510 ac of SH (Table 3, Line 6). Using the above results, we estimate the total amount of SH lost in the CHEU since species listing, including losses from the proposed action using the following equation:

⁴ Due to the high frequency of relatively small projects affecting smalltooth sawfish critical habitat, NMFS updates shallow, euryhaline habitat losses quarterly based on the U.S. federal fiscal year (December 31, March 31, June 30, September 30).

% SH lost since species listing (CHEU)

= [(SH loss due to this project

+ SH lost prior to critical habitat designation

+ SH lost since critical habitat designation)

 \div Total SH at time of species listing] \times 100

% SH lost since species listing (CHEU)

 $= [(0.005510 \ ac + 16.17 \ ac + 20.59 \ ac) \div 84,480 \ ac] \times 100$ % SH lost since species listing (CHEU) = (36.765510 \ ac \div 84,480 \ ac) \times 100 % SH lost since species listing (CHEU) = 0.043520% (Table 3, Line 7)

Thus, we estimate the percent of SH remaining within the CHEU as:

% SH remaining (CHEU) = 100% - % SH lost since species listing (CHEU) % SH remaining (CHEU) = 100% - 0.043520% (Table 3, Line 7) % SH remaining (CHEU) = 99.956480% (Table 3, Line 8)

Sha	llow, Euryhaline Habitat in the CHEU	Acres
1.	Available at the time of species listing	84,480
2.	Losses prior to critical habitat designation	16.17
3.	Losses since critical habitat designation	20.59
4.	Available as of September 30, 2017	84,443.24
5.	Area that must be maintained per Recovery Plan	80,256 (95% of 84,480)
6.	Affected by the proposed action	0.005510
7.	Affected since species listing (including the proposed action)	36.765510 (0.043520% of 84,480)
8.	Remaining	84,443.234490 (99.956480% of 84,480)

Table 3. Summary of Impacts to the Shallow, Euryhaline Habitat Essential Feature

Summary of Impacts to the Essential Feature

Very small percentages of the SH essential feature of smalltooth sawfish designated critical habitat have been affected by federal agency actions since the effective date of species listing. Including losses from this project, 99.956480% of the SH essential feature (Table 3, Line 8) available at the time of species listing remain in the CHEU. Thus, the loss of the essential feature associated with the proposed action, in combination with losses since we listed the species, does not provide any impediment to effectively protecting 95% of juvenile habitat in the CHEU available at the effective date of species listing, and therefore will not be an impediment to Recovery Objective #2.

8.3 Ensure Smalltooth Sawfish Abundance Increases (Recovery Objective #3)

In establishing Recovery Objective #3, we recognized that it was important that sufficient numbers of juvenile sawfish inhabit several nursery areas across a diverse geographic area to ensure survivorship and growth and to protect against the negative effects of stochastic events

within parts of their range. To meet this objective, Recovery Region G (i.e., CHEU) must support sufficiently large numbers of juvenile sawfish to ensure that the species is viable in the long-term and can maintain genetic diversity. Recovery Objective #3 requires that the relative abundance of small juvenile sawfish (< 200 cm) either increases at an average annual rate of at least 5% over a 27-year period, or juvenile abundance is at greater than 80% of the carrying capacity of the recovery region.

Assessing the effect of the proposed action on small juvenile abundance is made difficult by the state of available data. Since the designation of critical habitat and the release of the recovery plan in 2009, ongoing studies have been in place to monitor the US DPS of smalltooth sawfish. Florida Fish and Wildlife Conservation Commission - Fish and Wildlife Research Institute is conducting a study in the CHEU that is supported primarily with funding provided by NMFS through the ESA Section 6 Species Recovery Grants Program, while Florida State University, also funded by NMFS through ESA Section 6, and the NOAA NMFS Southeast Fisheries Science Center Panama City Laboratory and have focused studies in the TTIEU. The intent of these studies is to determine the abundance, distribution, habitat use, and movement of juvenile sawfish. Given the limited duration of the study in the CHEU (September 2009-current), there is not yet enough data to discern the trend in juvenile abundance within that Unit. Early indications are that juvenile sawfish are at least stable and likely increasing in the CHEU, due in large part to ESA-listing of the species and designation of critical habitat. While it may be too early to state definitively that juveniles within the CHEU are surviving to adulthood, researchers consistently capture newborn smalltooth sawfish, particularly within "hot spots," indicating adult smalltooth sawfish are pupping within Recovery Region G. Available data from the adjacent Recovery Region H (i.e., the TTIEU) indicate that adult smalltooth sawfish are also reproducing within this recovery region and that the juvenile population trend is at least stable and possibly increasingthough variability is high (Carlson & Osborne 2012; Carlson et al. 2007). With no other data to consider, the abundance trend in TTIEU represents the best data available for assessing the population trends in the CHEU. Therefore, we do not believe the loss of habitat associated with the proposed action, in combination with the losses to date, will impede the 5% annual growth objective for the juvenile population within Recovery Region G.

9 CONCLUSION

After reviewing the current status of smalltooth sawfish critical habitat, the environmental baseline, and the cumulative effects, it is our Opinion that the loss of 0.005510 ac (240 ft²) of shallow, euryhaline essential feature from the proposed riprap installation will not interfere with achieving the relevant habitat-based recovery objectives for smalltooth sawfish. Therefore, we conclude the proposed action will not impede the critical habitat's ability to support the smalltooth sawfish's conservation, despite permanent adverse effects. Given the nature of the proposed action and the information provided above, we conclude that the action, as proposed, is likely to adversely affect, but is not likely to destroy or adversely modify, smalltooth sawfish critical habitat.

10 INCIDENTAL TAKE STATEMENT

NMFS does not anticipate that the proposed action will incidentally take any species and no take is authorized. Nonetheless, any takes of smalltooth sawfish or sea turtles shall be immediately reported to takereport.nmfsser@noaa.gov. Refer to the present Biological Opinion by title, Ryan Davis Riprap, issuance date, NMFS PCTS identifier number, SER-2017-18847, and USACE permit number, SAJ-2017-01247 (NW-EMC). At that time, consultation must be reinitiated.

11 CONSERVATION RECOMMENDATIONS

Section 7(a)(1) of the ESA directs federal agencies to utilize their authority to further the purposes of the ESA by carrying out conservation programs for the benefit of endangered and threatened species. Conservation recommendations identified in Biological Opinions can assist action agencies in implementing their responsibilities under Section 7(a)(1). Conservation recommendations are discretionary activities designed to minimize or avoid adverse effects of a proposed action on listed species or critical habitat, to help implement recovery plans, or to develop information. The following conservation recommendations are discretionary measures that NMFS believes are consistent with this obligation and therefore should be carried out by the federal action agency:

- 1. Continue public outreach and education on smalltooth sawfish and smalltooth sawfish critical habitat in an effort to minimize interactions, injury, and mortality.
- 2. Provide funding to conduct directed research on smalltooth sawfish that will help further our understanding about the species (e.g., implement a relative abundance monitoring program which will help define how spatial and temporal variability in the physical and biological environment influence smalltooth sawfish) in an effort to predict long-term changes in smalltooth sawfish distribution, abundance, extent, and timing of movements.
- 3. Fund surveys of detailed bathymetry and mangrove coverage within smalltooth sawfish critical habitat. Lee County and the USACE recently funded such surveys within the Cape Coral municipality. Data is needed from other municipalities within the CHEU to establish a more accurate baseline assessment of both critical habitat features (red mangroves and shallow-water areas).
- 4. Fund and support restoration efforts that rehabilitate and create shallow, euryhaline and mangrove fringe habitats within the range of smalltooth sawfish.

To stay abreast of actions minimizing or avoiding adverse effects or benefitting listed species or their habitats, we request notification of the implementation of any conservation recommendations.

12 REINITIATION OF CONSULTATION

This concludes NMFS's formal consultation on the proposed action. As provided in 50 CFR 402.16, reinitiation of formal consultation is required where discretionary federal action agency

involvement or control over the action has been retained, or is authorized by law, and if (1) the amount or extent of incidental take is exceeded, (2) new information reveals effects of the agency action on listed species or designated critical habitat in a manner or to an extent not considered in this Opinion, (3) the agency action is subsequently modified in a manner that causes an effect on the listed species or critical habitat not considered in this Opinion, or (4) a new species is listed or critical habitat designated that may be affected by the action.

13 LITERATURE CITED

- Andrews, T. J., Clough, B. F., & Muller, G. J. (1984). Photosynthetic gas exchange properties and carbon isotope ratios of some mangroves in North Queensland. In H. J. Teas (Ed.), *Physiology and Management of Mangroves* (Vol. 9, pp. 15-23): Dr. W. Junk Publishers.
- Ball, M. C., Cochrane, M. J., & Rawson, H. M. (1997). Growth and water use of the mangroves *Rhizophora apiculata* and *R. stylosa* in response to salinity and humidity under ambient and elevated concentrations of atmospheric CO₂. *Plant, Cell & Environment, 20*(9), 1158-1166. doi:10.1046/j.1365-3040.1997.d01-144.x
- Burchett, M. D., Meredith, S., Pulkownik, A., & Pulkownik, S. (1984). Short term influences affecting growth and distribution of mangrove communities in the Sydney region. *Wetlands (Australia)*, 4(2), 10.
- Cahoon, D. R., Hensel, P., Rybczyk, J., McKee, K. L., Proffitt, C. E., & Perez, B. C. (2003). Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. *Journal of Ecology*, 91(6), 1093-1105. doi:10.2307/3599693
- Carlson, J. K., & Osborne, J. (2012). Relative abundance of smalltooth sawfish (Pristis pectinata) based on the Everglades National Park Creel Survey. NOAA Technical Memorandum NMFS-SEFSC-626 (NOAA Technical Memorandum NMFS-SEFSC-626). Retrieved from Panama City, Florida: http://www.sefscpanamalab.noaa.gov/shark/publications.htm
- Carlson, J. K., Osborne, J., & Schmidt, T. W. (2007). Monitoring the recovery of smalltooth sawfish, *Pristis pectinata*, using standardized relative indices of abundance. *Biological Conservation*, 136(2), 195-202. doi:10.1016/j.biocon.2006.11.013
- Dahl, T. E., & Johnson, C. E. (1991). Status and trends of wetlands in the conterminous United States, mid-1970s to mid-1980s. Retrieved from Washington, D.C.:
- Ellison, J. (2010). Vulnerability of Fiji's mangroves and associated coral reefs to climate change. A review. Retrieved from Suva, Fiji, WWF South Pacific Office:
- Field, C. D. (1995). Impact of expected climate change on mangroves. *Hydrobiologia*, 295(1-3), 75-81. doi:10.1007/bf00029113
- Garmestani, A. S., & Percival, H. F. (2005). Raccoon removal reduces sea turtle nest depredation in the ten thousand islands of Florida. *Southeastern Naturalist, 4*(3), 469-472.

- Gilman, E. L., Ellison, J., Duke, N. C., & Field, C. (2008). Threats to mangroves from climate change and adaptation options: A review. *Aquatic Botany*, 89(2), 237-250. doi:10.1016/j.aquabot.2007.12.009
- Gilman, E. L., Ellison, J., Jungblut, V., Van Lavieren, H., Wilson, L., Areki, F., . . . Henry, M. (2006). Adapting to Pacific Island mangrove responses to sea level rise and climate change. *Climate Research*, 32, 161-176.
- Gilmore, G. R. (1995). Environmental and Biogeographic Factors Influencing Ichthyofaunal Diversity: Indian River Lagoon. *Bulletin of Marine Science*, *57*(1), 153-170.
- GMFMC. (1998). Generic amendment for addressing essential fish habitat requirements in the following Fishery Management plans of the Gulf of Mexico: Shrimp Fishery of the Gulf of Mexico, United States waters; Red Drum Fishery of the Gulf of Mexico, Reef Fish Fishery of the Gulf of Mexico, Coastal Migratory Pelagic Resources (Mackerel) in the Gulf of Mexico and South Atlantic; Stone Crab Fishery of the Gulf of Mexico; Spiny Lobster Fishery of the Gulf of Mexico; Coral and Coral Reefs of the Gulf of Mexico. Retrieved from Tampa, Florida:
- GMFMC. (2005). Generic Amendment 3 for addressing EFH requirements, HAPCs, and adverse effects of fishing in the following FMPs of the Gulf of Mexico: Shrimp, Red Drum, Reef Fish, Stone Crab, Coral and Coral Reefs in the GOM and Spiny Lobster and the Coastal Migratory Pelagic resources of the GOM and South Atlantic. Retrieved from Tampa, FL:
- Harty, C. (2004). Planning strategies for mangrove and saltmarsh changes in southeast Australia. *Coastal Management*, 32(4), 405-415. doi:10.1080/08920750490487386
- Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., . . . Hatziolos, M. E. (2007). Coral reefs under rapid climate change and ocean acidification. *Science*, 318(5857), 1737-1742. doi:10.1126/science.1152509
- Hutchings, P. A., & Saenger, P. (1987). *Ecology of Mangroves*: St. Lucia, Queensland, Australia; New York: University of Queensland Press.
- IPCC. (2007). Climate Change 2007: Climate Change Impacts, Adaptation and Vulnerability.
 Summary for Policymakers. In S. Solomon, D. Quin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), *Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the IPPC (Intergovernmental Panel on Climate Change)*. Cambridge, UK and New York, NY: Cambridge University Press.
- IPCC. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), (pp. 1535).

- IPCC. (2014). *Climate change 2014: Impacts, adaptation, and vulnerability. IPCC Working Group II contribution to AR5.* Retrieved from <u>http://www.ipcc.ch/report/ar5/wg2/</u>
- McLeod, E., & Salm, R. V. (2006). *Managing mangroves for resilience to climate change*. Gland, Switzerland: IUCN.
- Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T., Gregory, J. M., ... Zhao, Z. C. (2007). Global climate projections. In S. Solomon, D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, J. H. L. Miller, & Z. Chen (Eds.), *Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth assessment Report of the Intergovernmental Panel on Climate Change* (pp. 747-846). Cambridge, United Kingdom and New York, NY: Cambridge University Press.
- Ning, Z. H., Turner, R. E., Doyle, T., & Abdollahi, K. K. (2003). *Integrated assessment of the climate change impacts on the Gulf Coast Region: findings of the Gulf Coast Regional Assessment*. Retrieved from Baton Rouge, Louisiana:
- NMFS. (2000). Smalltooth Sawfish Status Review. Retrieved from Saint Petrsburg, FL:
- NMFS. (2009). *Smalltooth Sawfish Recovery Plan (Pristis pectinata)*. Retrieved from Silver Spring, Maryland: <u>http://www.nmfs.noaa.gov/pr/recovery/plans.htm</u>
- Norton, S. L., Wiley, T. R., Carlson, J. K., Frick, A. L., Poulakis, G. R., & Simpfendorfer, C. A. (2012). Designating critical habitat for juvenile endangered smalltooth sawfish in the United States. *Marine and Coastal Fisheries*, 4(1), 473-480. doi:10.1080/19425120.2012.676606
- Orlando, S. P., Jr., P. H. Wendt, C. J. Klein, M. E. Patillo, K. C. Dennis, & Ward., H. G. (1994). Salinity Characteristics of South Atlantic Estuaries. Silver Spring, MD: NOAA, Office of Ocean Resources Conservation and Assessment.
- Pfeffer, W. T., Harper, J. T., & O'Neel, S. (2008). Kinematic Constraints on Glacier Contributions to 21st-Century Sea-Level Rise. *Science*, *321*(5894), 1340-1343.
- Poulakis, G. R. (2012). Distribution, Habitat Use, and Movements of Juvenile Smalltooth Sawfish, Pristis pectinata, in the Charlotte Harbor Estuarine System, Florida. (PhD in Oceanography), Florida Institute of Technology, Melbourne, FL.
- Poulakis, G. R., & Seitz, J. C. (2004). Recent occurrence of the smalltooth sawfish, *Pristis pectinata* (Elasmobranchiomorphi: Pristidae), in Florida Bay and the Florida Keys, with comments on sawfish ecology. *Florida Scientist*, 67(27), 27-35.
- Poulakis, G. R., Stevens, P. W., Timmers, A. A., Stafford, C. J., & Simpfendorfer, C. A. (2013). Movements of juvenile endangered smalltooth sawfish, *Pristis pectinata*, in an estuarine river system: use of non-main-stem river habitats and lagged responses to freshwater inflow-related changes. *Environmental Biology of Fishes*, 96(6), 763-778. doi:10.1007/s10641-012-0070-x

- Poulakis, G. R., Stevens, P. W., Timmers, A. A., Wiley, T. R., & Simpfendorfer, C. A. (2011). Abiotic affinities and spatiotemporal distribution of the endangered smalltooth sawfish, *Pristis pectinata*, in a south-western Florida nursery. *Marine and Freshwater Research*, 62(10), 1165-1177. doi:10.1071/MF11008
- Quigley, D. T. G., & Flannery, K. (2002). Leucoptic harbour porpoise *Phocoena phocoena* (L.). *Irish Naturalists' Journal*, 27(4), 170.
- Rahmstorf, S., Cazenave, A., Church, J. A., Hansen, J. E., Keeling, R. F., Parker, D. E., & Somerville, R. C. J. (2009). Recent climate observations compared to projections. *Science*, 316(5825), 709.
- Reddering, J. S. V. (1988). Prediction of the effects of reduced river discharge on estuaries of the south-eastern Cape Province, South Africa. South African Journal of Science, 84, 726-730.
- Saenger, P., & Moverley, J. (1985). Vegetative phenology of mangroves along the Queensland coastline. Ecology of the wet-dry tropics: Proceedings of a joint symposium with the Australian Mammal Society in association with the Darwin Institute of Technology, 13, 9. Retrieved from
- SAFMC. (1998). Final Plan for the South Atlantic Region: Essential Fish Habitat Requirements for the Fishery Management Plan of the South Atlantic Fishery Management Council. Retrieved from Charleston, SC:
- Scavia, D., Field, J. C., Boesch, D. F., Buddemeier, R. W., Burkett, V., Cayan, D. R., . . . Titus, J. G. (2002). Climate change impacts on US coastal and marine ecosystems. *Estuaries*, 25(2), 149-164.
- Semeniuk, V. (1994). Predicting the effect of sea-level rise on mangroves in northwestern Australia. *Journal of Coastal Research*, *10*(4), 1050-1076. doi:10.2307/4298296
- Simpfendorfer, C. A. (2001). Essential habitat of the smalltooth sawfish (Pristis pectinata). Report to the National Fisheries Service's Protected Resources Division. Retrieved from
- Simpfendorfer, C. A. (2003). *Abundance, movement and habitat use of the smalltooth sawfish. Final Report* (Mote Technical Report No. 929). Retrieved from Sarasota, FL:
- Simpfendorfer, C. A. (2006). *Movement and habitat use of smalltooth sawfish. Final Report* (Mote Marine Laboratory Technical Report 1070). Retrieved from Sarasota, FL:
- Simpfendorfer, C. A., Poulakis, G. R., O'Donnell, P. M., & Wiley, T. R. (2008). Growth rates of juvenile smalltooth sawfish, *Pristis pectinata* (Latham), in the western Atlantic. *Journal* of Fish Biology, 72(3), 711-723. doi:10.1111/j.1095-8649.2007.01764.x
- Simpfendorfer, C. A., Wiley, T. R., & Yeiser, B. G. (2010). Improving conservation planning for an endangered sawfish using data from acoustic telemetry. *Biological Conservation*, *143*, 1460-1469.

- Simpfendorfer, C. A., Yeiser, B. G., Wiley, T. R., Poulakis, G. R., Stevens, P. W., & Heupel, M. R. (2011). Environmental Influences on the Spatial Ecology of Juvenile Smalltooth Sawfish (*Pristis pectinata*): Results from Acoustic Monitoring. *PLoS ONE*, 6(2), e16918. doi:10.1371/journal.pone.0016918
- Snedaker, S. (1995). Mangroves and climate change in the Florida and Caribbean region: scenarios and hypotheses. *Hydrobiologia*, 295(1-3), 43-49. doi:10.1007/bf00029109
- Stedman, S., & Dahl, T. E. (2008). Status and trends of wetlands in the coastal watersheds of the Eastern United States 1998-2004. Retrieved from
- Trenberth, K. (2005). Uncertainty in Hurricanes and Global Warming. *Science*, 308(5729), 1753-1754. doi:10.1126/science.1112551
- UNESCO. (1992, 21-25 May, 1991). Coastal systems studies and sustainable development. . Paper presented at the COMAR Interregional Scientific Conference, Paris, 21-25 May, 1991.
- USEPA. (1994). Freshwater Inflow Action Agenda For The Gulf of Mexico; First Generation-Management Committee Report. Retrieved from
- USFWS. (1999). South Florida Multi-Species Recovery Plan Atlanta, Georgia. 2172p.
- Vargas-Moreno, J. C., & Flaxman, M. (2010). Addressing the challenges of climate change in the greater everglades landscape. Retrieved from Cambridge, Massachusetts: <u>http://www.alternativefuturestechnologies.com/everglades</u>
- Wanless, H. R., Vlaswinkel, B. M., & Jackson, K. L. (2005). Coastal Landscape and Channel Evolution Affecting Critical Habitats at Cape Sable, Everglades National Park, Florida. Retrieved from
- Whitfield, A. K., & Bruton, M. N. (1989). Some biological implications of reduced freshwater inflow into eastern Cape estuaries: a preliminary assessment. South African Journal of Science, 85, 691-694.
- Wiley, T. R., & Simpfendorfer, C. A. (2007). The ecology of elasmobranchs occurring in the Everglades National Park, Florida: implications for conservation and management. *Bulletin of Marine Science*, 80(1), 171-189.